
1

Monitoring of WVC-600 solar-inverter
via

433 MHz RF-interface
Author: Jaap van den Berg (jaap@berghelwig.nl) Date: 1-JAN-2022 Version: 0.2

Disclaimer/Read-Me-First!
The information in this document may be used freely on a non-commercial basis and at own risk
without any support of the author. Also legal and product responsibility issues regarding the use of
the described equipment (inverter, RF-device) must be observed! The author cannot be held
responsible for any faults, problems, damage or any legal issues caused by the application of the
information of this document.

Introduction/Summary
Since August 2020, the DC-power of my two self-installed solar-panels is converted to 230 Vac by the
WVC-600 solar-inverter. Some models of this Chinese solar-inverter are equipped with a 433 MHz
RF-interface that can provide on request measurement-data (like temperature, panel-voltage,
output-power/energy, etc.)

Based on info from the websites https://community.openenergymonitor.org/t/wvc-inverter-mqtt-
data-logging-for-all-versions-of-inverters/12352 and https://github.com/krywenko/WVC-inverters , a
DIY RF data-communication system has been built. Controlled by a Python-program, this system can
derive the measurement-data from the solar-inverter and store this data into a daily generated csv-
file, which can be processed by spreadsheet software like Excel.

This document assumes that the reader has at least basic knowledge of Python. If not, knowledge
can be obtained/refreshed at a Python tutorial like https://www.w3schools.com/python/default.asp
, https://pythonbasics.org/ , etc.

Installation of Python version 3

In order to run the two Python-programs (both test and main program), Python version 3 (3.5 or
higher) software must be installed on the computer that is connected to the RF data-communication
system.

To avoid disturbing already existing installations, first check if Python version 3 has already been
installed by entering the following code in a Python program text-file (e.g. pythonversion.py) and
execute it:

import sys
print("Python version:")
print (sys.version)
print()
print("Version info:")
print (sys.version_info)
print()
input("Press Enter to continue…")

The Python installation software can be downloaded for free from https://www.python.org/ and is
available for Windows, Linux, MAC-OS, etc.

mailto:jaap@berghelwig.nl
https://community.openenergymonitor.org/t/wvc-inverter-mqtt-data-logging-for-all-versions-of-inverters/12352
https://community.openenergymonitor.org/t/wvc-inverter-mqtt-data-logging-for-all-versions-of-inverters/12352
https://github.com/krywenko/WVC-inverters
https://www.w3schools.com/python/default.asp
https://pythonbasics.org/
https://www.python.org/

2

A Google search based “linux python3 install” can provide useful additional info for installing Python
version 3 on Linux based systems (like https://docs.python-guide.org/starting/install3/linux/).

After installation of the Python version 3 software, the installation of the library-package “pyserial”
must be verified by the command “pip list” or by entering the following code in a Python program
text-file (e.g. pyserialversion.py) and execute it:

import serial
print("Pyserial-version:")
print(serial.__version__)
print()
input("Press Enter to continue...")

If not installed, “pyserial” must be installed by the command “pip install pyserial” (see also
https://pypi.org/project/pyserial/)

Hardware and testing-software

Presence of RF-interface on the solar-inverter.

First of all, the presence of a 433 MHz antenna on a side-panel of the WVC-600 solar-inverter must
be verified, before starting the project…

Construction of the RF data-communication system

The RF data-communication system consists of two modules:

• USB-serial module (like the CH340 (preferred) or the PL2303)

• HC-12 data transceiver-module (documentation: HC-12.pdf)

• These two affordable modules are widely available at aliexpress.com, etc. For my own
project, the modules have been bought at:

o USB-serial module (including free download of driver):
https://www.tinytronics.nl/shop/nl/communicatie-en-signalen/serieel/usb/ch340-
3.3v-5v-ttl-usb-serial-port-adapter

o HC-12 data transceiver-module: https://www.tinytronics.nl/shop/nl/communicatie-
en-signalen/draadloos/rf/modules/hc-12-si4463-draadloze-serial-port-module-
433mhz

https://docs.python-guide.org/starting/install3/linux/
https://pypi.org/project/pyserial/
https://www.tinytronics.nl/shop/nl/communicatie-en-signalen/serieel/usb/ch340-3.3v-5v-ttl-usb-serial-port-adapter
https://www.tinytronics.nl/shop/nl/communicatie-en-signalen/serieel/usb/ch340-3.3v-5v-ttl-usb-serial-port-adapter
https://www.tinytronics.nl/shop/nl/communicatie-en-signalen/draadloos/rf/modules/hc-12-si4463-draadloze-serial-port-module-433mhz
https://www.tinytronics.nl/shop/nl/communicatie-en-signalen/draadloos/rf/modules/hc-12-si4463-draadloze-serial-port-module-433mhz
https://www.tinytronics.nl/shop/nl/communicatie-en-signalen/draadloos/rf/modules/hc-12-si4463-draadloze-serial-port-module-433mhz

3

The following pictures show the interconnection of these modules:

USB serial-module and HC-12 data transceiver-module

USB serial-module and HC-12 data transceiver-module (connections)

Module connection-issues:

• The 5Vdc-supply of the USB serial-module must be connected via a silicon-diode 1N4007 to
the Vcc-pin of the HC-12 module in order to decrease the supply-voltage.

• The yellow jumper connects the “3V3”-pin to the “VCC”-pin of the USB serial-module

• The blue jumper enables the grounding of the “SET”-pin of the HC-12 module to put this
module in the AT-command mode. In this mode, the HC-12 module can be configured
(regarding RX/TX-frequency, etc.) if necessary. The HC-12 module default configuration
(RX/TX-frequency 433.400 MHz at 100mW (+20 dBm), serial communication 9600 bits/sec, 8
bits no parity, 1 stop-bit) complies to the RF-interface of the WVC-600 solar inverter.

• The 433 MHz antenna (part of the HC-12 module delivery) can be soldered to the ANT-output
of the HC-12 module. But also a “quarter wave” antenna (based on an app. 17 cm wire) will
do nicely.

4

Testing and configuring of the RF data-communication system

First, set the HC-12-module in the AT-command mode by grounding the “SET”-pin.
After inserting the USB serial-module in a Windows-PC, the Windows-configuration should display an
active COM-port (e.g. in this case COM3)

-> ->

By default, the RF data-communication system should communicate at 9600 bits/sec 8 bits, no parity,
1 stop-bit.

The well-known terminal program PuTTY can be used for serial communication with the system.
Make sure to set the correct COM-port, Speed=9600 bits/sec Serial and in the Terminal-menu
the”settings “Local echo” and “Local line editing” to “Force on”

Next, click on “Open” and enter (use capital characters only!) “AT” in the black Putty screen. The
system should respond with “OK”.

Now, based on the HC-12-documentation HC-12.pdf, enter “AT+RX”. The system should now
respond:
OK+B9600
OK+RC001
OK+RP:+20dBm
OK+FU3

This corresponds with the default HC-12-setting:
-Mode FU3
-9600 bits/s (8 bits data, no parity, 1 stop-bit)
-Radio Channel CH001 (433.400 MHz) with output-power +20 dBm (100 mW)

5

Apart from the output-power (can be decreased if desired/necessary), this default setting must be
used to commumicate to the WVC-600 solar-inverter.

Program for testing the communication towards WVC-600 solar-inverter

After successful testing of the AT-command mode, the HC-12 module can now be switched to normal
operation by disabling the grounding of the “SET”-pin. The following Python3 progam “wvc600-com-
test.py” can be used to test the operation of the RF data-communication system towards the WVC-
600 solar-inverter. Before running this program, check at the input-parameters:

• The correct COM-port has been configured

• The correct WVC-600 inverter-id has been entered (see also sticker on inverter)

print(" ==")
print(" | Python3 program for testing communication towards |")
print(" | |")
print(" | WVC-600 inverter via RF-interface on 433.400 MHz |")
print(" | based on |")
print(" | USB-serial-module and HC-12 data-transceiver-module |")
print(" | |")
print(" | Author: Jaap van den Berg Date: 31-DEC-2021 Version: 0.1 |")
print(" ==")

---input-parameters---

Select correct COM-port!!

if Linux, un-comment following line
computer_COM_port="/dev/ttyUSB0"

if Windows, un-comment following line and enter correct COM-port (displayed by Windows configuration)
computer_COM_port="COM3"

Enter correct WVC-600 inverter-id!! (see sticker on inverter)
wvc600_id = "12345678"
--

print()
print("Program will send a hexadecimal request-code via com-port",computer_COM_port)
print("to WVC-600 inverter with id",wvc600_id)
print("(correct this in -----input-parameters----- of the Python-program if necessary)")

print()
input("Press Enter to continue")

Import of necessary Python-modules
import serial

Construction of command to be sent to the WVC-600 inverter
command_firstpart_hex = "f20000000000000000"
command_lastpart_hex = "65"
command_total_hex = command_firstpart_hex + wvc600_id + command_lastpart_hex
command_to_wvc600 = bytes.fromhex(command_total_hex)

print()
print("Hexadecimal request-code sent to the WVC-600-inverter with id",wvc600_id,":")
print(command_total_hex)

Open serial communication port at 9600 bits/sec (default 8 data-bits, no parity)
serial_comm_port = serial.Serial(port=computer_COM_port, baudrate=9600, timeout=1, write_timeout=1)
serial_comm_port.write(command_to_wvc600)
wvc600_response = serial_comm_port.read(28)
serial_comm_port.close()

if len(wvc600_response) == 28:
 wvc600_hex_output = wvc600_response.hex()

6

 print()
 print("WVC-600 inverter-response (hexadecimal): ")
 print(wvc600_hex_output)
 print()
 input("Press Enter to continue")
 print()
 print("WVC-600 inverter measurement-data decoded from response")
 Vdc_hex = wvc600_hex_output[28:32]
 Vdc = int(Vdc_hex,16)/100
 print("Vdc =",Vdc,"V")
 Vac_hex = wvc600_hex_output[32:36]
 Vac = int(Vac_hex,16)/100
 print("Vac =",Vac,"V")
 Idc_hex = wvc600_hex_output[36:40]
 Idc = int(Idc_hex,16)/100
 print("Idc =",Idc,"A")
 Etot_hex = wvc600_hex_output[40:44]
 Etot = int(Etot_hex,16)/100
 print("Etot =",Etot,"kWh")
 Pout_hex = wvc600_hex_output[48:52]
 Pout = int(Pout_hex,16)/10
 print("Pout =",Pout,"W")
 Temp_hex = wvc600_hex_output[52:56]
 Temp = int(Temp_hex,16)/100
 print("Temp =",Temp,"gr.C")
else:
 print()
 print("WVC-600 inverter did not respond correctly!")
 print("Possible causes:")
 print("--Wrong WVC-600 inverter-id used")
 print("--Wrong com-port used")
 print("--Malfunction in data-communication system")
 print("--Insufficient power from the solar panels")

print()
input("Press Enter to continue")

The program will first test the response-code of the WVC-600 solar-inverter to the request-code sent
by the RF data-communication system. Next, if the response-code is correct, the inverter
measurement-data will be decoded from the response-code.

7

Main software

Installation/operation Python-program “wvc600-mon.py”

When testing of the RF data-communication system has been successful completed, the
installation/operation of the main Python-program “wvc600-mon.py” can be started.

Because the WVC-600-inverter is only capable of communication via it’s RF-interface when the solar-
panels provide power, the program has the following modes of operation:

• awaiting-daylight-mode. The program starts in this mode (or has returned from the night-
mode), waiting for the solar-panels to provide enough power to start the WVC-600-inverter
by checking communication with WVC-600-inverter every 15 minutes.

• daylight-mode. As soon as the WVC-600-inverter is able to communicate, the program goes
from the awaiting-daylight-mode into the daylight-mode, periodically collecting the
responses of the inverter (determined by the sample period of at least 30 seconds). From
these responses, the measurement-data from the inverter is calculated and stored in a daily
csv-file.

• night-mode. After receiving three error-responses in a row from the WVC-600-inverter
(when the solar-panels are no longer producing power due to dusk) or the maximum
monitoring time is exceeded, the program closes the daily csv-file, shut down all
communication to the inverter and goes from the daylight-mode into the night-mode for the
duration the night-time-delay, depending on the month-number (e.g. in December more
than 13 hours). After this delay, the program returns to the awaiting-daylight-mode.

Program-text (blue marked text: comment-lines yellow marked text: Python program code)

#===
Python3 program for monitoring

WVC-600 inverter via RF-interface on 433.400 MHz
based on
USB-serial-module and HC-12 data-transceiver-module

Author: Jaap van den Berg Date: 27-DEC-2021 Version: 0.4

#===

#==
#---- Begin Input-data ---- Begin Input-data ---- Begin Input-data ---- Begin Input-data ---- Begin Input-data
#==
!!!Check before running program!!!
#-----------------------------------

Select applicable operating-system serial communication port -check first!-
Windows: check Windows "configuration" -> "devices" for correct COM-port ("COM1", "COM2", "COM3",...)
Linux: check with command "ls -l /dev | grep USB" for correct device (e.g. "/dev/ttyUSB0")
computer_COM_port="/dev/ttyUSB0"

Linux-note: Due to access-rights for "/dev/ttyUSB..", run program with "sudo python3 <program-name>.py"

First part of CSV-file-name (without .csv file-extension: will be added including date-stamp) for monitoring-data
(csv-file used in append-mode: adding new records to the already existing csv-file)
(if no path to folder is included, current program-folder will be used)
(!beware: \T, \t, \N, \n, \R, \r are escape-characters, then use \\T, \\n, etc. instead! (example: "c:\\New-folder..))
csv_filename_firstpart = "/wvc600-archive/wvc600-monitoring-data"

WVC600-inverter-Id (on the sticker at the front of the WVC-600 inverter)
wvc600_id = "12345678"

Maximum monitoring-time in daylight-mode (in minutes):
maximum_monitoring_time = 1200

Time (sample period) between the monitoring-samples in daylight-mode

8

(in seconds -preferably no less than 30-):
time_between_samples = 30

Number of days to run program (to prevent that the program will run forever…):
number_of_days = 400

#==
#---- End Input-data ---- End Input-data ---- End Input-data ---- End Input-data ---- End Input-data
#==

Import of necessary Python-modules
import time
import serial
import csv
import sys

Construction of command to be sent to the WVC-600-inverter
command_firstpart_hex = "f20000000000000000"
command_lastpart_hex = "65"
command_total_hex = command_firstpart_hex + wvc600_id + command_lastpart_hex
command_to_wvc600 = bytes.fromhex(command_total_hex)

Run the complete program for a maximum number of days
for day in range(number_of_days):

Start program in awaiting-daylight-mode

Open serial communication port at 9600 bits/sec (default 8 data-bits, no parity)
 serial_comm_port = serial.Serial(port=computer_COM_port, baudrate=9600, timeout=1, write_timeout=1)

Set response and power-output from wvc-600-inverter to zero
 wvc600_response = "0"
 Pout = 0

As long as there is no power-output > 0 response from wvc-600-inverter, stay in
awaiting-daylight-mode while-loop and check communication with WVC-600-inverter every 15 minutes
 while Pout == 0:
Send command to wvc-600-inverter
 serial_comm_port.write(command_to_wvc600)
Receive the 28 bytes response from wvc-600-inverter
 wvc600_response = serial_comm_port.read(28)
 if len(wvc600_response) == 28:
 wvc600_hex_output = wvc600_response.hex()
 Pout_hex = wvc600_hex_output[48:52]
 Pout = int(Pout_hex,16) / 10
 time.sleep(900)
End of awaiting-daylight-mode while-loop

Program now continues in daylight-mode

Construction of the complete daily csv-file name (including date-stamp)
 from time import gmtime, strftime, localtime
 date_stamp=strftime("-%Y-%m-%d", localtime())
 file_name_extension = ".csv"
 csv_filename = csv_filename_firstpart + date_stamp + file_name_extension

Activation of a new csv-file for a new day that will be used in
append-mode (adding new records to the already existing csv-file)
Check if csv_file already exists. If not, create it
 try:
 csv_file=open(csv_filename, 'rt')
 csv_file.close()
 csv_file=open(csv_filename, 'at', newline='', encoding="utf-8")
 writer = csv.writer(csv_file, dialect='excel', delimiter=';', quoting=csv.QUOTE_NONNUMERIC)
 except IOError:
Creation of csv-file if necessary
 csv_file=open(csv_filename, 'wt', newline='', encoding="utf-8")
 writer = csv.writer(csv_file, dialect='excel', delimiter=';', quoting=csv.QUOTE_NONNUMERIC)

Wait another 3 minutes to guarantee adequate day-light-level for more stable operation of
the wvc-600-inverter in daylight-mode
 time.sleep(180)

Calculation of the maximum number of samples during daylight-mode based on
maximum monitoring time and time between samples (sample period)

9

 maximum_number_of_samples = int(60 * maximum_monitoring_time / time_between_samples)

Set the number of executed samples and the number of error-responses of WVC-600-inverter to zero
 number_of_executed_samples = 0
 number_of_error_responses = 0

Start monitoring of WVC-600 inverter in the daylight-mode while-loop, as long as the WVC-600-inverter
is producing no more than 3 error responses in a row (when the solar-panels end their power output) and
the number of executed samples is less than the maximum number of samples
 while number_of_error_responses <= 2 and number_of_executed_samples <= maximum_number_of_samples:

Send command to wvc-600-inverter
 serial_comm_port.write(command_to_wvc600)

Receive the 28 bytes response from wvc-600-inverter
 wvc600_response_new = serial_comm_port.read(28)

Check on valid response from WVC-600: if no valid response (length not equal to 28 bytes),
keep the last response and increase number of error-responses
 if len(wvc600_response_new) == 28:
 wvc600_response = wvc600_response_new
 number_of_error_responses = 0
 else:
 number_of_error_responses = number_of_error_responses + 1

Increase number of executed samples
 number_of_executed_samples = number_of_executed_samples + 1

Convert response from bytes to hex
 wvc600_hex_output = wvc600_response.hex()

Calculation of WVC-600-inverter measurement-data from hex-output

Calculation of solar-panels Vdc-in
 Vdc_hex = wvc600_hex_output[28:32]
 Vdc = int(Vdc_hex,16) / 100

Calculation of output-voltage to grid Vac-out
 Vac_hex = wvc600_hex_output[32:36]
 Vac = int(Vac_hex,16) / 100

Calculation of solar-panels Idc-in
 Idc_hex = wvc600_hex_output[36:40]
 Idc = int(Idc_hex,16) / 100

Calculation of total energy generated by WVC-600-inverter E-total
 Etot_hex = wvc600_hex_output[40:44]
 Etot = int(Etot_hex,16) / 100

Calculation of output power to grid P-out
 Pout_hex = wvc600_hex_output[48:52]
 Pout = int(Pout_hex,16) / 10

Calculation of temperature of WVC-600-inverter Temp
 Temp_hex = wvc600_hex_output[52:56]
 Temp = int(Temp_hex,16) / 100

Construction of date-stamp:
 from time import gmtime, strftime, localtime
 date_stamp=strftime("%Y-%m-%d", localtime())

Construction of time-stamp:
 from time import gmtime, strftime, localtime
 time_stamp=strftime("%H:%M:%S", localtime())

Append calculated measurement data to csv-file:
 writer.writerow([date_stamp,time_stamp,Vdc,Idc,Vac,Pout,Temp,Etot])

Wait for executing next sample
 time.sleep(time_between_samples)

End of the day-mode while-loop (after more than 3 error responses in a row or exceeding the maximum number of samples)

After one minute, close serial communication port and csv-file
 time.sleep(60)
 serial_comm_port.close()

10

 csv_file.close()

Program now continues in night-mode

Provide a night-time-delay (length in seconds, depending on the actual month-number) in which communication
to the WVC-600-inverter is shut down in order to avoid needless RF-transmissions during the night

 def night_time_delay(i):
 switcher={
 1:47700,
 2:41400,
 3:34200,
 4:27000,
 5:20700,
 6:17100,
 7:18900,
 8:25200,
 9:32400,
 10:39600,
 11:45900,
 12:49500
 }
 return switcher.get(i,18000)
 from time import gmtime, strftime, localtime
 month_number=int(strftime("%m", localtime()))
 time.sleep(night_time_delay(month_number))

After this nigh-time-delay, return to awaiting-daylight-mode

Program will end anyway after the number_of_days of operation

Executing the Python program permanently in Linux based systems (e.g. Raspberry Pi)

Based on the name of the Python program wvc600-mon.py and stored in the folder /wvc600-folder
on the Linux based system (like e.g. the Raspberry Pi), the program can be simply executed with the
command (e.g. in the shell via Putty terminal):
sudo /usr/bin/python3 /wvc600-folder/wvc600-mon.py

But after logging out of the shell, the program has to be terminated…

However, on Linux based systems, Python programs can be also executed permanently in the
background (“daemonized”). This can be accomplished as follows:

First create a unit file in the folder /lib/systemd/system/:
cd /lib/systemd/system/
sudo nano wvc600-monitor.service

Enter the following lines:
[Unit]
Description=WVC600 monitoring service
After=multi-user.target

[Service]
Type=idle
ExecStart=/usr/bin/python3 /wvc600-folder/wvc600-mon.py

[Install]

11

WantedBy=multi-user.target

Set the permissions of wvc600-monitor.service:
sudo chmod 644 /lib/systemd/system/wvc600-monitor.service

Reload-command at any kind of change to any unit file:
sudo systemctl daemon-reload

Start the service:
sudo systemctl start wvc600-monitor.service

Stop the service:
sudo systemctl stop wvc600-monitor.service

View status:
systemctl status wvc600-monitor.service

As an option, the service can be enabled to start automatically on system-boot:
sudo systemctl enable wvc600-monitor.service

